Neuroimaging with MRI: Some of the Things We Can See

Robert W Cox, PhD
Scientific and Statistical Computing Core
DIRP / NIMH / NIH / DHHS / USA / Earth

Preview of Coming Attractions

- Quick overview of MRI physics (all on one slide!)
- Some images and their applications
 - T1-weighted = gray/white/CSF delineation
 - T2-weighted = detection of tissue abnormalities
 - T2*-weighted = venography
 - Contrast agents
 - Enhancement of signals from various tissue types/conditions
 - DCEMRI & tumor quantification
 - Diffusion weighted imaging = white matter quantification
- Imaging brain function with MRI
- Brain atlases and statistical neuroanatomy

Synopsis of MRI

- 1) Put subject in big magnetic field [and leave him there]
 - \Rightarrow Magnetizes the H nuclei in water (H_2O)
- 2) Transmit radio waves into subject [about 3 ms]
 - ⇒ Perturbs the magnetization of the water
- 3) Turn off radio wave transmitter
- 4) Receive radio waves re-transmitted by subject's H nuclei
 - → Manipulate re-transmission by playing with H magnetization with extra time-varying magnetic fields during this readout interval [10-100 ms]
 - ⇒ Radio waves transmitted by H nuclei are sensitive to magnetic fields those imposed from outside and those generated inside the body:
 - ⇒ Magnetic fields generated by tissue components change the data and so will change the computed image
- 5) Store measured radio wave data vs time
 - ⇒ Now go back to 2) to get some more data [many times]
- 6) Process raw ("k-space") radio wave data to reconstruct images

T1-Weighted Images

 Images whose design (timing of radio pulses and data readout) is to produce contrast between gray matter, white matter, and CSF

Three axial (AKA transaxial or horizontal) slices:

Spatial resolution is about 1 mm³

Acquisition time for whole head is 5-10 minutes

Zooming In

Can follow GM cortex fairly well

 Can measure thickness of cortex and try to quantify vs age and/or disease and/or genes

Bright spots and lines: arterial inflow artifact

- Leads to idea of MRA =
 Magnetic Resonance
 Angiography = acquire
 images to make arteries
 stand out even more
- Higher spatial resolution is possible
 - At the cost of scan time

Three Slices from a Volume

- A single acquisition is somewhat noisy
- Previous T1-weighted image was actually average of 4 separate acquisitions (to average out noise)
- MRI can be a 2D or a 3D acquisition technique

Some Bad MR Images

- Subject moved head during acquisition
 - Ghosting and ringing artifacts
 - Might be OK for some clinical purposes, but not much use for most quantitative brain research

MRI vs CT in the Brain

- Skull gets in the way of X-ray imaging:
 - Bone scatters X-rays much more than soft tissue
 - MRI radio waves pass unimpeded through bone

Brain Slice Animations

- Fun to watch (brain soup)
- More useful if movement through slices is under your direct interactive control

3D Visualization

MR images are 3D, but screens and retinas are 2D

Understanding 3D structures requires looking at them

in different ways

Volume rendering of T1-weighted image showing how corpus callosum spreads into hemisphere

T2-Weighted Images

 Often better than T1-weighting in detecting tumors and infarcts (usually radiologists look at both types of scans)

T2*-Weighted Images

 Designed to make venous blood (with lots of deoxyhemoglobin) darker than normal tissue = venography

Output image

minIP ±1 slice

minIP ±2 slices

Images post-processed to enhance small effects

MRI Contrast Agents

- Chemicals injected into blood, designed to alter MRI signal by affecting magnetic environment of H nuclei
 - Developed starting in late 1980s (and still continuing)
 - Used millions of times per year in USA
 - Designed to be biologically inert (only "active" magnetically)
 - About 1 person in 100,000 has allergic reaction
 - Purpose is to increase contrast of some tissue type
- Most commonly used is Gd-DTPA (Magnevist™)
 - Gadolinium ion (highly magnetizable) chelated to a molecule that won't pass an intact blood-brain barrier
 - Makes T1-weighted images brighter where it accumulates and makes T2- and T2*-weighted images darker
- Deoxy-hemoglobin is an endogenous T2* agent

Tumor: T2 and T1+contrast

T2-weighted

T1-weighted post-contrast

T2* MRV on a Seizure Patient

Gd-enhanced T1-weighted

Bad

Gd-enhanced T2*-weighted

DCE-MRI and Brain Tumors

- DCE = Dynamic Contrast Enhancement
 - Inject contrast agent rapidly ("bolus") and take rapid images of brain repeatedly to observe its influx
 - Cost of taking such rapid images: coarser spatial resolution and limited spatial coverage and more noise
 - Below: rapid T1-weighted images (20 s per volume)
 - 12 slices at 5 mm thickness (0.9 mm in-slice resolution)

Time Series of Images

Time Point #7: Before Gd hits (bright spot = sagittal sinus) Time Point #9: Gd into vessels

From John Butman's group in NIH/CC

Time Point #23: Gd leaks into tumor (now mostly gone from vessels)

Time Courses of Voxel Intensities

- Voxel in vessel
- This data is used as "arterial input function" for math model below

- Voxel in tumor
- Can fit math model of Gd infiltration to quantify "leakiness"
- Tumor grade?
- Necrosis?
- Treatment effects?

Diffusion Weighted Imaging

- Water molecules diffuse around during the imaging readout window of 10-100 ms
 - Scale of motion is 1-10 microns ≈ size of cells
 - Imaging can be made sensitive to this random diffusive motion (images are darkened where motion is larger)
- Can quantify diffusivity by taking an image without diffusion weighting and taking a separate image with diffusion weighting, then dividing the two:

Image(no DWI) ÷ Image(with DW) = $e^{b \cdot D}$

- where b is a known factor and D is a coefficient that measures (apparent) diffusivity
- Can thus compute images of ADC from multiple (2+) scans

DWI in Stroke

- ADC decreases in infarcted brain tissue within minutes of the vessel blockage
 - Causes thought to include cell swelling shutting down water pores that allow easy H₂0 exchange between intra- and extra-cellular spaces
 - Cell swelling also causes reduction in extra-cellular space which has a higher ADC than intra-cellular space
- Stroke damage doesn't show up on T1- or T2weighted images for 2-3 days post-blockage
- DWI is now commonly used to assess region of damage in stroke emergencies
 - And whether to administer TPA (clot dissolving agent with many bad side-effects)

MRI and Acute Stroke 4 hours

From Mike Mosely (Stanford Radiology)

Diffusion Tensor Imaging

- Diffusive movement of water in brain is not necessarily the same in all directions — not isotropic
- In WM, diffusion transverse to axonal fiber orientation is much slower (3-5 times) than diffusion along fibers
 - This anisotropic diffusion is described mathematically by a tensor = 3×3 symmetric matrix = 3 perpendicular directions with 3 separate diffusion coefficients D along each one
- Diffusion weighted MR images can be designed to give more weight to diffusion in some directions than in others
- By acquiring a collection (7+) of images with different directional encodings, can compute the diffusion tensor in each voxel ⇒ WM fiber orientation

DTI Results

Unweighted (baseline b=0) image

Fractional
Anisotropy (FA):
Measures how much
ADC depends on
direction

FA Color-coded for fiber directionality:

x=Red y=Green z=Blue

Other Types of MR Images

- MR Angiography = designed to enhance arterial blood (moving H₂0) — sometimes with Gd contrast
 - Much more commonly used than MRV
 - Useful in diagnosing blood supply problems
- Magnetization Transfer = designed to indirectly image H in proteins (not normally visible in MRI) via their magnetic effects on magnetized H in water
 - Useful in diagnosing MS and ALS abnormalities in WM
 - Especially when used with Gd contrast agent
 - Possibly useful in detecting Alzheimer's plaques
- Perfusion weighted images = designed to image blood flow into capillaries only
- MRI methodology R&D continues to advance

Functional Brain MRI - 1

- 1991: Discovery that oxygenation fraction of hemoglobin in blood changes *locally* (on the scale of 1-2 mm) about 2 seconds after increased neural activity in the region
- Recall T2*-weighted imaging: sensitive to deoxyhemoglobin level in veins
 - Arterial blood is normally nearly 100% oxygenated
 - Resting state venous blood is about 50% oxygenated
 - Neural activation increases oxygenation state of venous blood (for various complicated reasons)
 - Since deoxy-hemoglobin makes T2*-weighted image darker, neural activation will make image brighter (because have less deoxy-hemoglobin) *locally*

Functional Brain MRI - 2

- FMRI methodology:
 - Scan brain with T2*-weighted sequence every 2-3 seconds
 - Subject performs task in an on/off fashion, as cued by some sort of stimulus (visual, auditory, tactile, ...)
 - Usually gather about 1000 brain volumes at low spatial resolution
 - Images look bad in space, but are designed to provide useful information through time
 - Analyze data time series to look for up-and-down signals that match the stimulus time series

A single fast (100 ms) 2D image

Functional Brain MRI - 3

One fast image and a 3×3 grid of voxel time series

Brain Activation Map

Time series analysis results overlaid on T1-weighted volume

Applications of FMRI

- Clinical (in individuals):
 - Pre-surgical mapping of eloquent cortex to help the surgeon avoid resecting viable tissue
 - Can combine with DTI to help surgeon avoid important white matter bundles (e.g., cortico-spinal tract)
 - Measure hemispheric lateralization of language prior to temporal lobe surgery for drug-resistant epilepsy
- Neuroscience (in groups of subjects):
 - Segregation of brain into separate functional units
 - What *are* the separate functions of the brain pieces-parts?
 - Discover differences in activity between patients and normals (e.g., in schizophrenia)
 - Map functional (i.e., temporal) connectivity
 - vs. anatomical connectivity (e.g., via DTI)

Other Brain Mapping Tools

- Downsides to FMRI:
 - Poor time resolution since we are looking at signal from blood, not directly from neurons
 - Physiological connection between neural activity and hemodynamic signal measured by MRI is complex and poorly understood
- EEG and MEG: signal is from neural electrical activity, so time resolution is great
 - But spatial resolution is bad (and confusing)
- FDG PET: signal is closer to neural metabolism
 - But must give subject radioactive substance limits repeat studies, etc.
 - Time resolution much worse than FMRI, and space resolution somewhat worse
- Through-the-skull IR: new-ish; hits brain surface region

Digital Brain Atlases

- Attempts to provide statistical localization on MRI scans of brain regions determined by post-mortem histology
 - Statistical because each person's brain is different in details
 - Major effort by Zilles' group in Jülich to categorize 10 brains, region by region, using histology
- Also available: Talairach & Tournoux atlas regional boundaries (derived from 1 brain in the 1980s, plus some literature search to clear up ambiguities in the published book)
 - from Fox's group at UT San Antonio
- These are the two freely available human brain atlas databases now distributed
 - Also are some privately held databases (corporate & academic)

Cyto-architectonic Atlas


```
Focus point (LPI)=
     40 mm [R], -35 mm [P], 42 mm [S] {T-T Atlas}
     40 mm [R], -38 mm [P], 44 mm [S] {MNI Brain} 42 mm [R], -38 mm [P], 51 mm [S] {MNI Anat.}
Atlas IT_Daemon: Talairach-Tournoux Atlas
   Focus point: Right Inferior Parietal Lobule
          -AND- Right Brodmann area 40
   Within 5 mm: Right Supramarginal Gyrus
  Within 6 mm: Right Postcentral Gyrus
   Within 7 mm: Right Brodmann area 2
Atlas CA_N27_MPM: Cytoarch, Max. Prob. Maps (N27)
   Focus point: Area 2
   Within 2 mm: hIP2
  Within 5 mm: Area 3b
   Within 7 mm: Area 3a
          -AND- Area 4p
Atlas CA_N27_ML: Macro Labels (N27)
   Focus point: Right Inferior Parietal Lobule
   Within 1 mm: Right Postcentral Gyrus
          -AND- Right SupraMarginal Gyrus
Atlas CA_N27_PM: Cytoarch. Probabilistic Maps (N27)
   Focus point: hIP2 (p = 0.20)
          -AND- Area 2 (p = 0.80)
Atlas CA_N27_LR: Left/Right (N27)
   Focus point: Right Brain
```

"Where Am I" Navigation

Statistical Neuroanatomy

- Attempts to summarize and describe populations (and differences between populations) from MRI scans
- Example: Voxel Based Morphometry (VBM)
 - Try to characterize "gray matter density" as a function of location in brain, then map differences between patients and normals, …
 - Can also be applied to other measures (e.g., FA)
- Example: Cortical thickness maps
 - Extract gray matter cortical ribbon from images and measure thickness at each location
 - Map vs age, disease condition, ...
- Biggest practical issue: Spatial Alignment

VBM in Williams Syndrome

Yellow overlay shows regions with gray matter
volume reduction in WS
(13 WS patients vs 11 normals)
From Karen Berman's group in NIMH

The End (almost)

- MRI is:
 - Widely available (9000+ scanners in USA)
 - Harmless to subject if proper safety precautions are used
 - Very flexible: can make image intensity (contrast) sensitive to various sub-voxel structures
 - Still advancing in technology and applications
 - Still in a growth phase for brain research
- Limitations on spatial resolution and contrast types are frustrating
 - e.g., little chemical information is available with even the most sophisticated scanning methods
 - Novel contrast agents making some inroads in this direction

Unfair Pop Quiz

What are these images of?

dolphin brain